59 research outputs found

    Charge-monopole versus Gravitational Scattering at Planckian Energies

    Full text link
    The amplitude for the scattering of a point magnetic monopole and a point charge, at centre-of-mass energies much larger than the masses of the particles, and in the limit of low momentum transfer, is shown to be proportional to the (integer-valued) monopole strength, assuming the Dirac quantization condition for the monopole-charge system. It is demonstrated that, for small momentum transfer, charge-monopole electromagnetic effects remain comparable to those due to the gravitational interaction between the particles even at Planckian centre-of-mass energies.Comment: 9 pages, revtex, IMSc/93-4

    Astrophysical thermonuclear functions

    Full text link
    As theoretical knowledge and experimental verification of nuclear cross sections increases it becomes possible to refine analytic representations for nuclear reaction rates. In this paper mathematical/statistical techniques for deriving closed-form representations of thermonuclear functions are summarized and numerical results for them are given.The purpose of the paper is also to compare numerical results for approximate and closed-form representations of thermonuclear functions.Comment: 17 pages in LaTeX, 8 figures available on request from [email protected]

    Novel CP-violating Effects in B decays from Charged-Higgs in a Two-Higgs Doublet Model for the Top Quark

    Full text link
    We explore charged-Higgs cp-violating effects in a specific type III two-Higgs doublet model which is theoretically attractive as it accommodates the large mass of the top quark in a natural fashion. Two new CP-violating phases arise from the right-handed up quark sector. We consider CP violation in both neutral and charged B decays. Some of the important findings are as follows. 1) Large direct-CP asymmetry is found to be possible for B+- to psi/J K+-. 2) Sizable D-anti-D mixing effect at the percent level is found to be admissible despite the stringent constraints from the data on K-anti-K mixing, b to s gamma and B to tau nu decays. 3) A simple but distinctive CP asymmetry pattern emerges in decays of B_d and B_s mesons, including B_d to psi/J K_S, D+ D-, and B_s to D_s+ D_s-, psi eta/eta^prime, psi/J K_S. 4) The effect of D-anti-D mixing on the CP asymmetry in B+- to D/anti-D K+- and on the extraction of the angle gamma of the unitarity triangle from such decays can be significant.Comment: 32 pages, 5 figures, section V.A revised, version to appear in PR

    The lifetime of B_c-meson and some relevant problems

    Full text link
    The lifetime of the B_c-meson is estimated with consistent considerations on all of the heavy mesons (B0,B±,Bs,D0,D±DsB^0, B^\pm, B_s, D^0, D^\pm D_s) and the double heavy meson B_c. In the estimate, the framework, where the non-spectator effects for nonleptonic decays are taken into account properly, is adopted, and the parameters needed to be fixed are treated carefully and determined by fitting the available data. The bound-state effects in it are also considered. We find that in decays of the meson B_c, the QCD correction terms of the penguin diagrams and the main component terms c_1O_1, c_2O_2 of the effective interaction Lagrangian have direct interference that causes an enhancement about 3 ~ 4% in the total width of the B_c meson.Comment: 27 pages, 0 figur

    The check of QCD based on the tau-decay data analysis in the complex q^2-plane

    Get PDF
    The thorough analysis of the ALEPH data on hadronic tau-decay is performed in the framework of QCD. The perturbative calculations are performed in 3 and 4-loop approximations. The terms of the operator product expansion (OPE) are accounted up to dimension D=8. The value of the QCD coupling constant alpha_s(m_tau^2)=0.355 pm 0.025 was found from hadronic branching ratio R_tau. The V+A and V spectral function are analyzed using analytical properties of polarization operators in the whole complex q^2-plane. Borel sum rules in the complex q^2 plane along the rays, starting from the origin, are used. It was demonstrated that QCD with OPE terms is in agreement with the data for the coupling constant close to the lower error edge alpha_s(m_tau^2)=0.330. The restriction on the value of the gluonic condensate was found =0.006 pm 0.012 GeV^2. The analytical perturbative QCD was compared with the data. It is demonstrated to be in strong contradiction with experiment. The restrictions on the renormalon contribution were found. The instanton contributions to the polarization operator are analyzed in various sum rules. In Borel transformation they appear to be small, but not in spectral moments sum rules.Comment: 24 pages; 1 latex + 13 figure files. V2: misprints are corrected, uncertainty in alpha_s is explained in more transparent way, acknowledgement is adde

    Accuracy and Stability of Computing High-Order Derivatives of Analytic Functions by Cauchy Integrals

    Full text link
    High-order derivatives of analytic functions are expressible as Cauchy integrals over circular contours, which can very effectively be approximated, e.g., by trapezoidal sums. Whereas analytically each radius r up to the radius of convergence is equal, numerical stability strongly depends on r. We give a comprehensive study of this effect; in particular we show that there is a unique radius that minimizes the loss of accuracy caused by round-off errors. For large classes of functions, though not for all, this radius actually gives about full accuracy; a remarkable fact that we explain by the theory of Hardy spaces, by the Wiman-Valiron and Levin-Pfluger theory of entire functions, and by the saddle-point method of asymptotic analysis. Many examples and non-trivial applications are discussed in detail.Comment: Version 4 has some references and a discussion of other quadrature rules added; 57 pages, 7 figures, 6 tables; to appear in Found. Comput. Mat

    Chebyshev Solution of the Nearly-Singular One-Dimensional Helmholtz Equation and Related Singular Perturbation Equations: Multiple Scale Series and the Boundary Layer Rule-of-Thumb

    Full text link
    The one-dimensional Helmholtz equation, Δ 2 u xx − u = f ( x ), arises in many applications, often as a component of three-dimensional fluids codes. Unfortunately, it is difficult to solve for Δâ‰Ș1 because the homogeneous solutions are exp (± x /Δ), which have boundary layers of thickness O(1/Δ). By analyzing the asymptotic Chebyshev coefficients of exponentials, we rederive the Orszag–Israeli rule [16] that Chebyshev polynomials are needed to obtain an accuracy of 1% or better for the homogeneous solutions. (Interestingly, this is identical with the boundary layer rule-of-thumb in [5], which was derived for singular functions like tanh([ x −1]/Δ).) Two strategies for small Δ are described. The first is the method of multiple scales, which is very general, and applies to variable coefficient differential equations, too. The second, when f ( x ) is a polynomial, is to compute an exact particular integral of the Helmholtz equation as a polynomial of the same degree in the form of a Chebyshev series by solving triangular pentadiagonal systems. This can be combined with the analytic homogeneous solutions to synthesize the general solution. However, the multiple scales method is more efficient than the Chebyshev algorithm when Δ is very, very tiny.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45436/1/11075_2004_Article_2865.pd

    Basic Methods for Computing Special Functions

    Get PDF
    This paper gives an overview of methods for the numerical evaluation of special functions, that is, the functions that arise in many problems from mathematical physics, engineering, probability theory, and other applied sciences. We consider in detail a selection of basic methods which are frequently used in the numerical evaluation of special functions: converging and asymptotic series, including Chebyshev expansions, linear recurrence relations, and numerical quadrature. Several other methods are available and some of these will be discussed in less detail. We give examples of recent software for special functions where these methods are used. We mention a list of new publications on computational aspects of special functions available on our website

    Algorithm 435: modified incomplete gamma function [S14]

    No full text
    • 

    corecore